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Chapter 1 – Introduction

One of the latest trends in commercial computing is a a shift towards par-

allelism [5]. In place of a single processor executing all facets of one task, a

collection of processors will be used to attack individual portions of the task.

While parallel programming has been around for several decades now, only

recently has it been so available, thanks to commercial GPUs. This rise came

about due to the encouragement of the video game industry. It was from this

revolution that the first commercial programmable graphics processing unit

was designed. It was also the video game industry that drove the capabil-

ities of such chips at a rate far surpassing Moore’s Law [13]. Now, several

years into this recent boom, a variety of general purpose GPU (GPGPU) al-

gorithms can be found which take advantage of the power of the GPU. The

applications of these algorithms include physics simulation [7], bioinformatics

[3], and database searches [6], among many others.

Artificial intelligence is among these fields to begin making use of general-

purpose GPU programming. Several algorithms in this field have been mi-

grated to GPGPU programming. Feed forward neural networks [15], genetic

algorithms [11], and self-organizing maps [18] are among the list.
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Another technology that has recently seen a recent increase of interest is

neural network implementations. Neural networks were heavily researched

during the mid 20’th century set atop discoveries like Hebb’s Rule [8]. For a

period of time the interest in these algorithms died down until the 80’s when

Werbos’ error back-propagation algorithm for feed-forward neural networks

gained attention [16]. Once again in the spotlight, and now with the advantage

of better technology, a wide variety of neural network algorithms have since

emerged on the scene. A branch of these algorithms includes recurrent neural

networks, a category of networks capable of holding a sense of short-term

memory. Jordan, Elman, and Juergen are all famous for their contributions in

this area [10] [4] [9].

One such recurrent neural network is the Real Time Recurrent Learning

(RTRL) neural network[17]. This employs the same algorithm as traditional

feed forward models, with an added set of inputs from the prior frame in time.

This allows for easier classification of time-dependent patterns, alluding to fi-

nite state machine classification [12]. However true gradient calculations of

the RTRL’s recurrent components turns out to be a computationally costly

algorithm. For this reason CPU applications of RTRL networks can be lim-

ited by their slow computation time. To alleviate this problem, this paper

will explore a GPGPU implementation of a generalization of the Real Time

Recurrent Learning neural network algorithm.
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Chapter 2 – Neural Networks

The operation of the brain has been pondered by humans for centuries. Hu-

mans recognized the brain as the thinking organ as early as the 4th century

BC, even to a surprisingly accurate degree. Hippocrates was among the first

to recognize the brain as the organ responsible for conscious thought, and to

even distinguish between sensory and motor neurons. With further advances

in the study of biology, mathematical models were constructed of their behav-

ior. Hebb discovered the change in connectivity with relation to firing rate

of neighboring neurons [8]. Further and greater advances in research on the

properties of the human mind are being made to this day.

2.1 Biological Inspiration

Brains are made of neuron cell bodies. Neurons collect incoming signals

through touching dendrites. They feed those signals forward to other touching

neurons through their axion. When a neuron fires, it forwards its electrical

signal to neighboring neurons. Those neighboring neurons in turn accumulate

charge until they reach a certain threshold. At this point they stop accepting

charge from their neighbors and their carried charge levels off. This threshold
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Figure 2.1: Example of tanh(x) as an activation function. Note how the signal
eventually tapers and levels off as x tends further from zero.

limit is mathematically represented by an activation function. An example of

an activation function can be seen in Figure 2.1.

Neurons accepting charge from their neighbors also forward this charge

to their subsequent neighbors. Neurons which cause each other to fire grow

stronger connections. Hebb came up with a model on the firing rate of neurons

with respect to their distance, and measured the rate at which their distance

grew in proximity with relation to their firing [8].
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2.2 Mathematical Model

Figure 2.2: Diagram of a feed-forward calculation for a single-layered network.
First input vector elements (xj) are multiplied by weight coefficients (wi,j) and
summed into net vector elements (neti). Next the activation function (σ(x))
is applied to each net vector element to produce the output vector elements
(yi).

A simple, single-layered neural network can be represented with the follow-

ing components: Let x be the input layer, a vector composed of input signal

values xj. Let w be the weight matrix, a matrix storing the coefficients of

relation between the components of the input and output vectors. Let net

be the vector of the net sums of linear components of the input layer vector
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and the weight coefficients, such that neti =
∑

j wi,j This is analogous to the

biological model of input neurons sending signals through their axions to be

accumulated in the output layer’s neurons. Let y be the output layer, a vector

composed of output signal values yi. Let the activation function of the neu-

ron be represented as σ(x). The value of the output signal after its transfer

through the activation function is calculated as yi = σ(neti). The process can

be seen visually in Figure 2.2.

Popular implementations of σ(x) are the function of 1
1+e−x , e−x

2
, or tanh(x).

These are chosen because, past some critical point, the function asymptotes

at a fixed value. Using a boolean analogy for the neuron signal, signals are

usually classified as being high or low depending on whether they are closer

to the supremum or infemum of the range of the activation function.

The model of the single-layer neural network is as follows:

neti =
∑
j

wi,jxj (2.1)

yi = σ(neti) (2.2)

This works well for simple linear classification problems, such as the Logical

AND and Logical OR problems (Figure 2.3). Each row of the weight matrix

represents a distinct plane in the output space’s dimension. These planes’
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Figure 2.3: Examples of lines (which are one-dimensional planes) dividing half-
spaces of classified and unclassified points for the Logical AND and Logical
OR problems. Input values of 0.3 are used to represent “true” while values of
-0.3 are used to represent “false.” An additional neuron is appended to the
input layer: a “bias” signal which perpetually sends a value of 1. This allows
for solving non-homogeneous systems and allows the classifying plane to move
off of the origin. The transfer function is defined as σ(x) = tanh(x). Positive
output values denote a “true” output while negative output values denote a
“false” output.

half-spaces eventually adjust to a linear classification of data. These planes

can be fittingly used to represent simple logical operations. However classified

data can only fall in a certain half-space. Certain logical problems, such as the

Logical XOR problem, cannot be classified by a single half-space and therefore
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cannot be learned by a single-layer neural network (Figure 2.4).

Figure 2.4: Examples of the the Logical XOR problem which cannot be clas-
sified by a single half-space. Two half-spaces are required to accurately define
the classified and unclassified points for this problem.

To represent more complex classifications than half-spaces, we can take the

signals of the output layer and treat them as inputs into a new single-layer

network. Let ai be the i’th layer of neurons in our neural network. Let aij be
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the individual elements of ai. Let wi,k be the matrix of the linear coefficients

of influence from layer ak to layer neti. Let wi,kj,l be the coefficient that akl

influences netij.

Figure 2.5: An arbitrary possible topology of a neural network

To preserve acyclicity of the connetivity, let pi represent the set of indexes of

vectors that feed into the i’th vector. We have to enforce the rule ∀i, k, pi,k < i

to ensure no cycles will exist in our model. Enforcing this rule makes compu-

tation easier and also comes in handy when differentiating the variables. We

will get to differentiation in the upcoming section on gradient descent. Our

model can now be written as follows:
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netij =
∑
k

∑
l

w
i,pi,k

j,l a
pi,k

l (2.3)

aij = σ(netij) (2.4)

Forward-propagating the signals through a network of n layers can be per-

formed in O(n) time. This can be achieved due to the acyclic connection con-

straint imposed on feed-forward networks – specifically – that ∀i, k, pi,k < i.

When calculating the i’th layer this constraint assures us that all previous

layers l such that l < i have already been calculated, therefore all input layers

api,k have already been calculated. The order of calculations can be performed

as follows:

a0
j = xj (2.5)

net1j =
∑
k

∑
l

w
1,p1,k

j,l a
pi,k

l (2.6)

a1
j = σ(net1j) (2.7)

net2j =
∑
k

∑
l

w
2,p1,k

j,l a
pi,k

l (2.8)

a2
j = σ(net2j) (2.9)

. . .

netyj =
∑
k

∑
l

w
y,py,k

j,l a
pi,k

l (2.10)
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yj = ayj = σ(netyj ) (2.11)

The output of the final layer now holds the output of the network, y.

2.3 Supervised Learning Error Functions

We have just covered the task of calculating the output to a network for

a given input and a given state of the weight matrices. A neural network

will only accurately classify a function if the state of its weight matrices are

properly set to represent that function. This brings us to the issue of how to

correctly set the weight matrix values. There are several algorithms which can

be used to set the weights of a neural network to represent a desired function.

One of the more popular methods is by supervised learning. Supervised

learning involves training the neural network using a subset of correct outputs

for specific inputs. The neural network then extrapolates a means to classify

vectors of input signals that it had not yet been presented with.

A single iteration of training the network operates via the following steps:

First the an arbitrary pair of inputs and associated known correct outputs

are chosen. The inputs are copied into the neural network’s input layer. The

signals are then fed forward through the neural network to calculate the net-

work’s output. The network output values are then compared to the correct
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output values associated with the inputs that the network was provided with.

The vector of the difference between the produced output and desired output

is then used to adjust the weights.

Let x be the vector of input signals into the neural network. Let d be the

vector of known correct outputs. This is also known as the network’s desired

outputs. Let y be the vector of output signals produced by the network from

forward propagating the input vector x.

An error function, E, is created and defined as the square distance between

the vectors of the network’s outputs and desired outputs. This function has a

global minima at the point at which the desired output and network output

are equal. The function is concave on either side. A scalar of 1
2

is multiplied

to the function so that the coefficient from the squared terms will be cancelled

out when the function is differentiated. The function is described as follows:

E =
1

2

∑
i

(yi − di)2 (2.12)

Note that the error function is dependent on the network output and the

desired output. Recall that to train a network we act on sets of inputs and

associated known outputs, and that a different set of input and known output

is chosen for each training iteration. This causes the state of the weights of



13

Figure 2.6: Graphs of the error value (z-axis) vs. the weight of the input,
x, vs. the weight of the bias signal for the Logical NOT problem. Left:
x = 0.3, d = −0.3, Middle: x = −0.3, d = 0.3, Right: the average of the two.
True boolean values are expressed as signal values of 0.3, while false values are
expressed as signal values of −0.3.

the network to converge along the average of each error function associated

with each desired output (Figure 2.6). The end result is a classification that

works approximately well for what exposure it had of the data that it trained

to. Neural networks are not meant to recreate exact models of the system they

observe.

The weights are adjusted by the gradient of the error function with respect

to the weights. Each iteration the negative of the gradient is added to the

weights in order to minimize the error. The weights are subsequently adjusted

closer to the minima of the error function equation (Figure 2.7). This can be

represented with the following equation:

∂w
m,pm,n

s,t

∂t
= − ∂E

∂w
m,pm,n

s,t

(2.13)



14

Figure 2.7: Contour lines of the averaged error functions for the Logical NOT
problem

2.4 Gradient Descent

To find the value that each weight is adjusted with regard to the error

function we must compute the partial term of the error with respect to each

weight. Calculating the error gradient can first be broken down in the following

terms:

∂E

∂w
m,pm,n

s,t

=
∂E

∂yj
· ∂yj
∂w

m,pm,n

s,t

(2.14)

First we will focus on the partial term ∂E
∂y

.
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∂E

∂yj
=

∂

∂yj

[
1

2

∑
k

(yk − dk)2

]
(2.15)

∂E

∂yj
=

1

2

∑
k

∂

∂yj

[
(yk − dk)2

]
(2.16)

∂E

∂yj
=
∑
k

(
(yk − dk) ·

(
−∂yj
∂yk

))
(2.17)

∂E

∂yj
=
∑
k

((yk − dk) · −δj,k) (2.18)

∂E

∂yj
= dj − yj (2.19)

Now we know ∂E
∂yj

. We need only calculate
∂yj

∂w
m,pm,n
s,t

and multiply the two to

find the value of ∂E
∂w

m,pm,n
s,t

. To find this we can once again break
∂ay

j

∂w
m,pm,n
s,t

into

separate components via the chain rule. We will define this relation in terms

of aij due to the fact that the equation applies the output vectors of all layers

in the network.

∂aij
∂w

m,pm,n

s,t

=
∂aij
∂netij

·
∂netij

∂w
m,pm,n

s,t

(2.20)

Note that the indices of
∂ai

j

∂netij
match. This is due to an implementation

constraint that activation functions operate per-element on the vectors they

are applied to. All derivatives
∂ai

j

∂neti
j′

= 0 for j 6= j′. For this reason the j 6= j′

indices are omitted, and j′ is replaced by j.
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Differentiating the activation function with respect to the net input of the

linear combination gives us the following:

∂aij
∂netij

= σ′(netij) (2.21)

Differentiating ∂net
∂w

is calculated as follows:

netij =
∑
k

∑
l

w
i,pi,k

j,l a
pi,k

l (2.22)

∂netij
∂w

m,pm,n

s,t

=
∂

∂w
m,pm,n

s,t

[∑
k

∑
l

w
i,pi,k

j,l a
pi,k

l

]
(2.23)

∂netij
∂w

m,pm,n

s,t

=
∑
k

∑
l

∂

∂w
m,pm,n

s,t

[
w
i,pi,k

j,l a
pi,k

l

]
(2.24)

∂netij
∂w

m,pm,n

s,t

=
∑
k

∑
l

(
∂w

i,pi,k

j,l

∂w
m,pm,n

s,t

a
pi,k

l + w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

)
(2.25)

∂netij
∂w

m,pm,n

s,t

=
∑
k

∑
l

(
a
pi,k

l δi,mδpi,k,pm,nδj,sδl,t + w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

)
(2.26)

∂netij
∂w

m,pm,n

s,t

=
∑
k

(
a
pi,k

t δi,mδpi,k,pm,nδj,s +
∑
l

(
w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

))
(2.27)

∂netij
∂w

m,pm,n

s,t

= a
pm,n

t δi,mδj,s +
∑
k

∑
l

(
w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

)
(2.28)

If the weight which we are differentiating with respect to lies between layers

ai and api,k then we can use the network topology’s constraint of acyclicity to
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assert that it will not appear in any previous connections’ derivatives. The

∂a
pi,k
l

∂w
m,pm,n
s,t

relation is zero. We can also assert that i = m, and therefore do

not need to sum across pi but rather only need to compute the gradient with

respect to pm,n. The equations simplify to the following:

∂netij
∂w

m,pm,n

s,t

= a
pm,n

t δi,mδj,s +
∑
k

∑
l

(
w
i,pi,k

j,l · 0
)

(2.29)

∂netij
∂w

m,pm,n

s,t

= a
pm,n

t δi,mδj,s (2.30)

∂netij
∂w

pi,n

s,t

= a
pi,n

t δj,s (2.31)

If the weight we are differentiating with respect to does not lie between layers

ai and api,k then the value of δi,m is zero. We are then left with a product in

terms of the previous layer’s gradient,
∂a

pi,k
l

∂w
m,pm,n
s,t

:

∂netij
∂w

m,pm,n

s,t

= a
pm,n

t · 0 · δj,s +
∑
k

∑
l

(
w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

)
(2.32)

∂netij
∂w

m,pm,n

s,t

=
∑
k

∑
l

w
i,pi,k

j,l

∂a
pi,k

l

∂w
m,pm,n

s,t

(2.33)

2.5 Back Propagation

Regardless of what calculation is used to compute
∂netij

∂w
m,pm,n
s,t

, the ∂E
∂ai

j
and

∂ij
∂netij

terms used to compute the error function will still remain the same. Combined
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they form the ∂E
∂netij

term of the gradient (Eqn. 2.34). Due to the fact that

several weights can feed into the same layer, it is possible that several weight

updates will use the same ∂E
∂netij

calculation. For this reason it is useful to store

this term of each layer’s gradient calculations.

∂E

∂w
m,pm,n

s,t

=
∂E

∂aij
·
∂aij
∂netij

·
∂netij

∂w
m,pm,n

s,t

(2.34)

∂E

∂w
m,pm,n

s,t

=
∂E

∂netij
·

∂netij
∂w

m,pm,n

s,t

(2.35)

Solving for ∂E
∂netij

in terms of the successive layer’s networks yields Eqn. 2.36.

A graphical depiction of the computations behind this process can be seen in

Figure 2.8.

∂E

∂netkl
=

∂akl
∂netkl

· ∂E
∂akl

(2.36)

∂E

∂netkl
=

∂akl
∂netkl

·
∑

i∈outputs(k)

∑
j

wi,kj,l
∂E

∂netij
(2.37)

Both the ∂E
∂neti

vector can be calculated and the weight can be adjusted in

the same pass. Due to the acyclicity constraint imposed on pi,k all these cal-

culations can be performed in linear time with respect to the number of layers

provided we begin by calculating the last layer’s values and finish calculating

the first layer’s values – in reverse-order that the feed-forward equations were
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computed.

Figure 2.8: A visual description for back propagating the ∂E
∂netij

error term.

Combining the two products of the chain rule, ∂E
∂netij

and
∂netij

∂w
m,pm,n
s,t

, produces

the desired gradient of ∂E
∂w

m,pm,n
s,t

. If we substitute our prior calculations we find

the following:

∂E

∂w
m,pm,n

s,t

=
∂E

∂netij
·

∂netij
∂w

m,pm,n

s,t

(2.38)

∂E

∂w
m,pm,n

s,t

= a
pm,n

t δi,mδj,s ·
∂E

∂netij
(2.39)
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∂E

∂w
i,pi,n

j,t

= a
pi,n

t · ∂E

∂netij
(2.40)

Renaming the pi,n index to k and the t index to l gives us the following:

∂E

∂wi,kj,l
= akl ·

∂E

∂netij
(2.41)

We now update the weights using a Euler integration method:

∂wi,kj,l
∂t

= − ∂E

∂wi,kj,l
(2.42)

∂wi,kj,l
∂t

= −akl ·
∂E

∂netij
(2.43)

2.6 Gradient Descent Example: Logical NOT

To provide a simple example, we will consider the convergence of weights

trained to the logical function y = NOT x. For our σ activation function,

we will use tanh(x). When providing boolean inputs for training data to our

neural network our values corresponding with a “true” will be encoded as 0.3.

False will be −0.3. I chose this value because it is set between the midpoint

and supremum of the range of tanh(x). It also exists at a point where the

derivative of tanh(x) is still near its peak magnitude. The encoding of the

outputs will be as follows: if the output signal is greater than zero it will be

considered “true.” If it is less than zero then it will be considered “false.”
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The symbols are as follows: y is the output corresponding to a1
0, x the input

corresponding to a0
0. The net accumulation of the input layers is net and the

weight of the input’s contribution to the net is w1,0
0,0. The bias’ linear influence

to net is given by w1,0
0,1. Finally, d is the desired signal of the system.

net = x · w1,0
0,0 + w1,0

0,1 (2.44)

y = σ(net) = tanh(net) (2.45)

E =
1

2
(d− y)2 (2.46)

Expanding the error function in terms of the varying two weights gives us

the following:

E =
1

2

(
d− tanh

(
x · w1,0

0,0 + w1,0
0,1

))2
(2.47)

The possible inputs and desired outputs for training this system are d =

−0.3 when x = 0.3, corresponding to the expression “not true = false,” and

d = 0.3 when x = −0.3, corresponding to the expression “not false = true.”

These can be seen in Figure 2.9.

Since the differentiation is a linear operation we know it is distributive over

addition. From there we can linearly combine the two error functions to see

what basins the system will converge to. Figure 2.10 demonstrates this result-
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Figure 2.9: Graphs of the error value (z-axis) vs. the weight of the input,
x, vs. the weight of the bias signal for the Logical NOT problem. Left:
x = 0.3, d = −0.3, Right: x = −0.3, d = 0.3

Figure 2.10: A linear combination of the two input/desired set’s error functions

ing combination.

Once the weights reach that minimum the neural network is then capable

of providing a numeric analogy to the Logical NOT problem. Figure 2.11

shows an example of the error level of a neural network converging on the

Logical NOT problem. Note that as the network converges there is still some

fluctuation in the descent. This is due to the fact that each iteration which

the network is trained, it is trained to a potentially different set of data. The

subtle errors of a converged network show the weights slightly changing as the
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network tries to negotiate itself between all trained solutions, as is shown in

Figure 2.10. Also note that at one point the graph immediately levels off. This

is due to the network reaching the precision limit of the hardware which it is

running on.

Figure 2.11: Log scale plot of the convergence of a feed forward network train-
ing to the Logical NOT operation shown above. Error is scaled logarithmically.
Fluctuations are due to randomness in the network training information. Near
iteration 3300 the error levels off due to it reaching a hardware precision limit.
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Chapter 3 – Recurrent Neural Networks

Traditional artificial neural networks are useful for function approximation,

however they are only good for classification of the immediate vector of input

signals the system is presented with. To classify a pattern or a grammar it

would be necessary to keep track of an observer’s state. Recurrent neural

networks allow this by introducing cycles to the topology of the network.

3.1 Feed Forward

To account for recurrent connectivity in our network we will start with our

original equation for feeding forward our signal, equation 3.2. From there we

will add an extra term to represent the influence of the previous iteration’s

state by means of recurrent connections. Let µi,kj,l represent the j, l index of the

matrix of weights connecting from layer k into layer i. Let qi,k denote the index

of the layer in the network corresponding to the k’th incoming connection from

the previous timeframe into layer i. Let τ represent the time at which the value

is being referenced.

aij(τ) = σ(netij(τ)), (3.1)
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netij(τ) =
∑
k

∑
l

w
i,pi,k

j,l (τ)a
pi,k

l (τ) +
∑
k

∑
l

µ
i,qi,k
j,l (τ)a

pi,k

l (τ − 1) (3.2)

3.2 Back Propagation

Now that the feed forward aspect has been described we will move on to

the amendments to updating the weight matrices. Unlike pi,k’s constraint, qi,k

contains elements that could be of any index of the network. This invalidates

some of the previous simplifications taken when calculating the equations for

back propagation. Due to the recurrence in the dependencies of equations, the

gradient terms now possess references to every previously referenced index in

time. This leaves us with an infinite number of paths to account for when

describing our gradient function:

∂aij
∂w

m,pm,n

s,t

|τ= σ′
(
netij (τ)

)
·

∂netij
∂w

m,pm,n

s,t

|τ (3.3)

∂netij
∂w

m,pm,n

s,t

|τ=
∑
k,l

(
∂w

i,pi,k

j,l

∂w
m,pm,n

s,t

· api,k

l (τ) + w
i,pi,k

j,l · ∂a
pi,k

l

∂w
m,pm,n

s,t

|τ

)
+

∑
k,l

(
∂µ

i,qi,k
j,l

∂w
m,pm,n

s,t

|τ ·a
qi,k
l (τ − 1) + µ

i,qi,k
j,l (τ) · ∂a

qi,k
l

∂w
m,pm,n

s,t

|τ−1

) (3.4)
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∂netij
∂w

m,pm,n

s,t

|τ= δi,mδj,sa
pm,n

t (τ) +
∑
k,l

w
i,pi,k

j,l (τ)

(
∂a

pi,k

l

∂w
m,pm,n

s,t

|τ
)

+

∑
k,l

(
µ
i,qi,k
j,l (τ)

∂a
qi,k
l

∂w
m,pm,n

s,t

|τ−1

) (3.5)

Figure 3.1: The top figure shows an example recurrent network. The single
red line shows the weight for which the error gradient will be calculated with
respect to. Below, the information propagation of the network is divided
among various instances in time. The red lines show the dependencies of
computation for the gradient with respect to the target weight.
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The initial gradient calculation shown in Eqn. 3.5 leaves us with a circular

definition. The derivative is written in terms of the derivative itself. A visual

description of what is causing this can be seen in Figure 3.1. We can circumvent

this as follows: The relation between the partial of each layer’s output signal

vector and the weight for which we are calculating the gradient of takes on

the form of a rank-3 tensor. Storing this tensor and recalculating it each

iteration will maintain the information for all previous instances in time of

the gradient. The ∂E
∂net

vector that was used in updating the weights of non-

recurrent networks can no longer be used due to its dependency on acyclicity.

ξ
m,pm,n,i
s,t,j (τ) =

∂aij
∂w

m,pm,n

s,t

|τ= σ′
(
netij(τ)

)
·

∂netij
∂w

m,pm,n

s,t

|τ (3.6)

∂netij
∂w

m,pm,n

s,t

|τ= δi,mδj,sa
pm,n

t (τ) +
∑
k,l

(
w
i,pi,k

j,l (τ)ξ
m,pm,n,pi,k

s,t,l (τ)
)

+

∑
k,l

(
µ
i,qi,k
j,l (τ)ξ

m,pm,n,qi,k
s,t,l (τ − 1)

) (3.7)

ζ
m,pm,n,i
s,t,j (τ) =

∂aij
∂µ

m,qm,n

s,t

|τ= σ′
(
netij(τ)

)
·
∂netij
∂µ

m,qm,n

s,t

|τ (3.8)
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∂netij
∂µ

m,qm,n

s,t

|τ=
∑
k,l

(
w
i,pi,k

j,l (τ)ζ
m,qm,n,pi,k

s,t,l (τ)
)

+

δi,mδj,sa
qm,n

t (τ − 1) +
∑
k,l

(
µ
i,qi,k
j,l (τ)ζ

m,qm,n,qi,k
s,t,l (τ − 1)

) (3.9)

The change in weights, ∂E
∂w

, can be calculated by combining the terms of

∂y
∂w

and ∂E
∂y

. To update each weight we then combine the last layer’s gradient

tensor, ∂y
∂w

, with the error function’s provided ∂E
∂y

. This can be seen in Figure

3.2.
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Figure 3.2: For each weight, a copy of the network is stored. The edges of the
copy contain tensors that store history. Unlike back propagation, the history
is updated in a feed-forward method. This circumvents limitations to graphs
with cycles which would cause gradient equation dependences.
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Chapter 4 – GPGPU

4.1 Current GPGPU Implementation Options

A need for higher level languages emerged from the many different chipsets

and instruction sets of various GPUs. As different vendors made different

attempts to remedy this situation, different GPU programming languages

emerged. Developers of GPGPU code have several different options:

4.2 NVIDIA Cg

Cg was the first proposal of shading languages. It was developed by NVIDIA

as they created the first commercial programmable GPU graphics card. It was

originally designed to be easy to learn for programmers already familiar with

C In terms of graphics card vendors, Cg was an exclusively-NVIDIA creation.

4.3 HLSL

The languages of Cg and HLSL were developed cooperatively by NVIDIA

and Microsoft with the intention of being interchangeable for each platform.

For this reason the two languages are near identical. These languages were
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highly tailored to the fixed-functionality pipeline that graphics cards had been

producing for the last decade.

4.4 GLSL

GLSL was the attempt by OpenGL to standardize all the vendor-specific

GPU languages that had been developed. GLSL was similar to Cg in some

respects. It differs in subtle ways. The shader functions in Cg operated on ac-

cepting input parameter lists and returning structures. Those of GLSL accept

no parameters and return no values, however they pre-populate certain global

variables (declared varying, uniform, etc) before the function’s execution and

require certain variables to be written to by its end (gl_Position, gl_FragColor,

etc).

The design of the language was for the purpose of rendering, however its

texture mapping and framebuffer rendering features can be manipulated to

perform the parallel computations. This is the most cumbersome to use for

our implementation due to repetitive manipulation of framebuffer objects and

graphics contexts. In the end it is favorable for being the most cross platform.

In some cases it utilizes the hardware to the greatest extent.
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4.5 NVIDIA CUDA

NVIDIA bridged the gap of all the graphics programming required to per-

form non-graphics algorithms with CUDA. This is the most C-like, which

makes it the easiest to integrate into applications. However, like Cg, it still

fails to be provided by vendors other than NVIDIA. [1]

4.6 ATI Brook

Brook was developed at Stanford and adopted by ATI for competition with

CUDA. Brook was designed around the notion of streams and kernels. Stream

objects are allocated on GPU memory and read to or written from through

CPU-GPU functions. GPU kernel functions then act on streams just as CPU

functions act on CPU memory. [2]

4.7 OpenCL

OpenCL is the standardization for what GPGPU programming CUDA al-

lowed to be done. OpenCL will do its best unify all the various attempts at

GPGPU programming languages. It is being added to OpenGL 3.0 and will

be seen in Mac OS X Snow Leopard 10.6. [14]
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Chapter 5 – Algorithm

5.1 Choosing GLSL

I chose GLSL because it was the most platform-independet and backwards

compatible choice. CUDA would have been a likely candidate, however it was

a vendor-specific language. I decided to maintain independence of platform in

my implementation. OpenCL is still budding technology and would not have

as large of a backwards compatibility support as GLSL.

GLSL can perform kernel passes using OpenGL textures. Textures have

certain restrictions on format, size, and resolution. Typical GPGPU programs

operation on a fairly recent invention in the lifetime of graphic cards: floating

point precision textures. These are textures whose channel elements (red,

green, blue, alpha) are represented with floating point precision data.

The first implementation of the algorithm only stored one vector/matrix/ten-

sor element per pixel. Rather than only use one channel for each texel the

GLSL code was redesigned to use all four channels. This requires a bit more

special planning, but was still feasible. See section 5.7.2 for an example of

matrix multiplication using all four channels.
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Another constraint on GLSL usage is texture size. Older cards have a re-

striction to only use power-of-two texture constraints. Newer cards can use

non-power of two sizes via newer OpenGL API extensions. For flexibility I

designed this for old power-of-two-constrained cards. To accomplish this I had

to pad all 2D textures with unused pixels to round the width and height up

to the next power of two.

5.2 Hardware Constraints

OpenGL graphics cards only support textures with dimensions up to a cer-

tain size. This can be found by querying the GL_MAX_TEXTURE_SIZE variable. On

modern graphics cards this is typically a value of 1024, 2048, 4096, or 8192.

Vectors used in the GPU version of the RNN algorithm must keep their size

smaller than the texture maximum size. Networks which require larger sizes

than their hardware allows can circumvent this by splitting oversized vectors

into many smaller-sized vectors. At present this limitation is left to the imple-

menter of the network, however a future development would be for the GPU

algorithm to automatically perform this adjustment. Figure 5.1 gives a visual

example of this transformation.

Another important constraint for different underlying hardware is its num-

ber of texture units. GPGPU kernels are limited by a maximum number of
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Figure 5.1: Demonstration of a remedy to supporting vector sizes larger than
the limiting size of textures on graphics cards.

texture units. For certain implementations described below an arbitrary num-

ber of inputs is required. If a network layer calculation requires more units

than hardware allows then layer accumulation can be deferred through addi-

tional layers that are connected through identity weight relations and identity

activation functions. Figure 5.2 shows a visual example of this.

Despite it being a standard in the GLSL reference, older NVIDIA imple-

mentations do not support the operator[ ] non-constant integer access. For
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Figure 5.2: Demonstration of a remedy to supporting incoming connections
larger than the limiting number of texture units on graphics cards.

that reason some special case code had to be implemented as a work-around.

5.3 Implementation

To accurately perform all the correct computations for the layer at time τ+1,

the τ and τ − 1 layers need to be stored. Each timeframe holds information

pertaining to the layers, the weights, and the history tensor.

Each timeframe’s ith layer contains the following: the activation function,

σi; the signal before activation, netij; the signal after activation, aij; the deriva-
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tive between the two,
∂ai

j

∂netij
. As stated in section 2.4, the current algorithm

assumes that this function operates on each vector element individually – that

is – that
∂ai

j

∂neti
j′

= 0 for j 6= j′. The timeframe’s connection from layer pi,k to

layer i holds the weight matrix, w
i,pi,k

j,l . The timeframe’s history gradient ten-

sor is also stored. This tensor holds the content of ξ
m,pm,n,i
s,t,j for non-recurrent

connections and ζ
m,qm,n,i
s,t,j for recurrent connections.

5.4 Usage

RNN’s are constructed by specifying the number of layers and connectivity

between them. Optional information can be specified in addition to this, such

as what activation functions are used at each layer and what connections

should exist between layers.

Once created, an RNN then undergoes an iterative training procedure in

which they adjust to fit to some unknown classifying function. First, inputs are

filled according to the black box’s inputs. Next, desired outputs are specified

for the certain inputs. Last, the object’s RNN::process method is called: the

network’s output is computed, the error is compared with the desired output,

and the weights are adjusted accordingly via back propagation.

// s e t up your network :

rnnlib : : GPURNN rnn ;
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rnn . setDirect (2 , 2 , 1) ;

rnn . prepare ( ) ;

for ( int i = 0 ; i < iterations ; i++) {

int a = rand ( ) & 1 ;

int b = rand ( ) & 1 ;

int d = a & b ;

// prepare inputs

rnn . input [ 0 ] = rnn . getInputSignal ( )−>to (a ) ;

rnn . input [ 1 ] = rnn . getInputSignal ( )−>to (b ) ;

// prepare outputs

rnn . desired [ 0 ] = rnn . getOutputSignal ( )−>to (d ) ;

// eva luate and ad jus t weights

double error = rnn . process ( ) ;

}

5.4.1 RNN::process

The RNN::process method is broken into several steps which can be executed

explicitly on their own:

float RNN : : process ( ) {

feedForward ( ) ;

calcDeDy ( ) ;

float error = calcError ( ) ;
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updateHistory ( ) ;

updateWeights ( ) ;

cycleLayers ( ) ;

return error ;

}

5.4.2 RNN::cycleLayers

The last step in the iteration is to cycle the pointers of the layers. This

moves the contents of our current timeframe to our last timeframe and re-

cycles our last timeframe to be used as our next timeframe. This is a fairly

straightforward operation:

void RNN : : cycleLayers ( ) {

RNNTimeframe ∗lastPreviousFrame = frames [ PREVIOUS_FRAME ] ;

frames [ PREVIOUS_FRAME ] = frames [ CURRENT_FRAME ] ;

frames [ CURRENT_FRAME ] = lastPreviousFrame ;

}
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5.5 CPU Implementation

5.5.1 CPURNN::feedForward

The CPURNN::feedforward method works as follows: First the network input

vector is copied into the first layer of the current frame. Next, for each layer,

for each input into that layer, the input vector is transformed by the weight

matrix and accumulated in the layer’s net variable. The net is transformed

by the activation function and stored in x. Finally the net and x are used to

calculate the activation function’s derivative, which is stored in dXdNet.

void CPURNN : : feedForward ( ) {

frames [ CURRENT_FRAME]−>fillInput ( input ) ;

frames [ CURRENT_FRAME]−>feedForward ( frames [ PREVIOUS_FRAME ] ) ;

}

void CPURNNTimeframe : : feedForward ( CPURNNTimeframe ∗lastframe ) {

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

vecf &net = layers (i )−>net ;

net . fill ( 0 . f ) ;

for ( int k = 0 ; k < i ; k++) {

if ( ! weights (i , k ) ) continue ;

matf &w = weights (i , k )−>w ;

vecf &x = layers (k )−>x ;
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net += w ∗ x ;

}

vecf &y = layers (i )−>x ;

y = layers (i )−>signal−>transfer ( net ) ;

vecf &dYdNet = layers (i )−>dXdNet ;

dYdNet = layers (i )−>signal−>deriv (net , y ) ;

}

}

5.5.2 CPURNN::calcDeDy

The network’s ∂E
∂y

placed in a distinct structure for flexibility of implemen-

tation. This function calculates the gradient of the error function with respect

to last layer’s signal vector. By default, the CPURNN::calcDeDy assumes the error

function to be E(y) = 1
2

∑
j(yj − dj)2. This is a standard for supervised learn-

ing. However for certain tasks, such as unsupervised learning, it is useful to

manually calculate and provide the ∂E
∂y

vector.

void CPURNN : : calcDeDy ( ) {

frames [ CURRENT_FRAME]−> calcDeDy ( desired , dEdY ) ;

}
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void CPURNNTimeframe : : calcDeDy ( const vecf &desired , vecf &dEdY ) {

CPURNNLayer ∗lastlayer = layers ( layers . dim ( )−1) ;

const vecf &y = lastlayer−>x ;

dEdY = y − desired ;

}

5.5.3 CPURNN::calcError

The CPURNN::calcError function is a purely cosmetic function. It performs

the actual E(y) = 1
2

∑
j(yj − dj)2 calculation. This is useful for observing the

convergence behavior of the network, but does not come into play in regards

to the back-propagation.

void CPURNN : : calcError ( ) {

float e = 0 . f ;

for ( int i = 0 ; i < dEdY . dim ( ) ; i++) {

e += dEdY (i ) ∗ dEdY (i ) ;

}

e ∗= 0 . 5 ;

return e ;

}
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5.5.4 CPURNN::updateHistory

The CPURNN::updateHistory function updates the ∂a
∂w

components of each layer

with respect to each weight. Acyclic topology neural networks back-propagate

the errors, first calculating the last layer error term and then using those values

to calculate prior ∂E
∂w

terms. The dependency of the ∂a
∂w

is the opposite: it

instead forward-propgates the partials, starting at the first layer and finishing

at the last. This is done up each connection of the network until the ∂y
∂w

partial

is computed. Only then can the error partial be calculated with respect to the

weights, and the weights can be updated (Figure 3.2).

void CPURNN : : updateHistory ( ) {

frames [ CURRENT_FRAME]−>updateHistory ( frames [ PREVIOUS_FRAME ] ,

dEdY ) ;

}

void CPURNNTimeframe : : updateHistory ( CPURNNTimeframe ∗lastframe ,

vecf &dEdY ) {

// f o r the weights f e ed ing in from the cur rent timeframe

// forward−propogate the dX/dW ca l c u l a t i o n s to f i nd dY/dW fo r each

W

for ( int m = 1 ; m < layers . dim ( ) ; m++) {

const vecf &xm = layers (m )−>x ;
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for ( int n = 0 ; n < m ; n++) {

if ( ! weights (m , n ) ) continue ;

const vecf &xn = layers (n )−>x ;

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

const vecf &xi = layers (i )−>x ;

const vecf &dXidNet = layers (i )−>dXdNet ;

tensor3f &hmni = history (m , n , i )−>dXdW ;

for ( int j = 0 ; j < hmni . depth ( ) ; j++) {

for ( int s = 0 ; s < hmni . height ( ) ; s++) {

for ( int t = 0 ; t < hmni . width ( ) ; t++) {

hmni (s , t , j ) = 0 . f ;

for ( int k = 0 ; k < i ; k++) {

if ( ! weights (i , k ) ) continue ;

if (k ) { //no weights f e ed in to the input l ay e r

const vecf &xk = layers (k )−>x ;

const matf &wik = weights (i , k )−>w ;

const tensor3f &hmnk = history (m , n , k )−>dXdW ;

for ( int l = 0 ; l < xk . dim ( ) ; l++) {

hmni (s , t , j ) += wik (j , l ) ∗ hmnk (s , t , l ) ;

}

}

if (i == m && j == s && k == n ) { //Kronecher d e l t a s

hmni (s , t , j ) += xn (t ) ;

}

}

for ( int k = 1 ; k < layers . dim ( ) ; k++) {
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if ( ! recurWeights (i , k ) ) continue ;

const vecf &xk = layers (k )−>x ;

const matf &wik = recurWeights (i , k )−>w ;

const tensor3f &hmnk = lastframe−>history (m , n , k )−>dXdW ;

for ( int l = 0 ; l < xk . dim ( ) ; l++) {

hmni (s , t , j ) += wik (j , l ) ∗ hmnk (s , t , l ) ;

}

}

}

}

}

for ( int j = 0 ; j < hmni . depth ( ) ; j++) {

for ( int s = 0 ; s < hmni . height ( ) ; s++) {

for ( int t = 0 ; t < hmni . width ( ) ; t++) {

hmni (s , t , j ) ∗= dXidNet (j ) ;

}

}

}

}

}

}

// f o r the weights f e ed ing in from the prev ious timeframe

// forward−propogate the dX/dW ca l c u l a t i o n s to f i nd dY/dW fo r each

W

for ( int m = 1 ; m < layers . dim ( ) ; m++) {
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const vecf &xm = layers (m )−>x ;

for ( int n = 0 ; n < m ; n++) {

if ( ! recurWeights (m , n ) ) continue ;

const vecf &prevXn = lastframe−>layers (n )−>x ;

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

const vecf &xi = layers (i )−>x ;

const vecf &dXidNet = layers (i )−>dXdNet ;

tensor3f &hmni = recurHistory (m , n , i )−>dXdW ;

for ( int j = 0 ; j < hmni . depth ( ) ; j++) {

for ( int s = 0 ; s < hmni . height ( ) ; s++) {

for ( int t = 0 ; t < hmni . width ( ) ; t++) {

hmni (s , t , j ) = 0 . f ;

for ( int k = 1 ; k < i ; k++) {

if ( ! weights (i , k ) ) continue ;

const vecf &xk = layers (k )−>x ;

const matf &wik = weights (i , k )−>w ;

const tensor3f &hmnk = recurHistory (m , n , k )−>dXdW ;

for ( int l = 0 ; l < xk . dim ( ) ; l++) {

hmni (s , t , j ) += wik (j , l ) ∗ hmnk (s , t , l ) ;

}

}

for ( int k = 1 ; k < layers . dim ( ) ; k++) {

if ( ! recurWeights (i , k ) ) continue ;

if (k ) {

const vecf &xk = layers (k )−>x ; // d imens i ona l i t y only

const matf &wik = recurWeights (i , k )−>w ;
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const tensor3f &hmnk = lastframe−>recurHistory (m , n , k )−>

dXdW ;

for ( int l = 0 ; l < xk . dim ( ) ; l++) {

hmni (s , t , j ) += wik (j , l ) ∗ hmnk (s , t , l ) ;

}

}

if (i == m && j == s && k == n ) {

hmni (s , t , j ) += prevXn (t ) ;

}

}

}

}

}

for ( int j = 0 ; j < hmni . depth ( ) ; j++) {

for ( int s = 0 ; s < hmni . height ( ) ; s++) {

for ( int t = 0 ; t < hmni . width ( ) ; t++) {

hmni (s , t , j ) ∗= dXidNet (j ) ;

}

}

}

}

}

}

}
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5.5.5 CPURNN::updateWeights

After the ∂x
∂w

is calculated for each layer, the gradient with respect to the

last layer, ∂y
∂w

, can be multiplied with the ∂E
∂y

to get the gradient of the error

with respect to each weight, ∂E
∂w

. Take care to note that, because we are trying

to minimize the error, we want to travel in the direction of the negative of the

gradient rather than the positive.

void CPURNN : : updateWeights ( ) {

frames [ CURRENT_FRAME]−>updateWeights ( frames [ PREVIOUS_FRAME ] , dEdY

, timestep ) ;

frames [ PREVIOUS_FRAME]−>fillWeights ( frames [ CURRENT_FRAME ] ) ;

}

void CPURNNTimeframe : : updateWeights ( CPURNNTimeframe ∗lastframe ,

const vecf &dEdY , float stepSize ) {

// s c a l e the dY/dW by the dE/dY to get each weight ’ s dE/dW

for ( int m = 1 ; m < layers . dim ( ) ; m++) {

const vecf &xm = layers (m )−>x ;

for ( int n = 0 ; n < m ; n++) {

if ( ! weights (m , n ) ) continue ;

const vecf &xn = layers (n )−>x ;

matf &wmn = weights (m , n )−>w ;

const vecf &y = layers ( layers . dim ( )−1)−>x ;

const tensor3f &hmny = history (m , n , layers . dim ( )−1)−>dXdW ;

for ( int i = 0 ; i < y . dim ( ) ; i++) {
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for ( int s = 0 ; s < xm . dim ( ) ; s++) {

for ( int t = 0 ; t < xn . dim ( ) ; t++) {

float dYdW = hmny (s , t , i ) ;

wmn (s , t ) −= stepSize ∗ dEdY (i ) ∗ dYdW ;

}

}

}

}

}

// s c a l e the dY/dW by the dE/dY to get each weight ’ s dE/dW

for ( int m = 1 ; m < layers . dim ( ) ; m++) {

const vecf &xm = layers (m )−>x ;

for ( int n = 0 ; n < m ; n++) {

if ( ! recurWeights (m , n ) ) continue ;

const vecf &prevXn = layers (n )−>x ;

matf &wmn = recurWeights (m , n )−>w ;

const vecf &y = layers ( layers . dim ( )−1)−>x ;

const tensor3f &hmny = recurHistory (m , n , layers . dim ( )−1)−>dXdW ;

for ( int i = 0 ; i < y . dim ( ) ; i++) {

for ( int s = 0 ; s < xm . dim ( ) ; s++) {

for ( int t = 0 ; t < prevXn . dim ( ) ; t++) {

float dYdW = hmny (s , t , i ) ;

wmn (s , t ) −= stepSize ∗ dEdY (i ) ∗ dYdW ;

}

}
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}

}

}

}

5.6 GPU Implementation

For each layer, each of our net, a, and ∂a
∂net

vectors is stored in its own

2D texture. I first considered using a single texture by using the red texel

component for the net vector, the green for a, etc. However this proved to be

a poor decision since some GPU texture kernel operations require reading to

some and writing to other vectors in the same layer. Implementing two such

vectors on the same texture would impede such an operation with at least

the need for an additional temporary texture and a separate texture copy

operation, so I chose otherwise.

The wi,kj,l matrix is stored column-order, with every four column vector el-

ements stored in a texel’s RGBA components. Matrices are also allowed an

optional bias row, equivalent in operation as extending the matrix height by

one unit, and appending a “1” value to any multiplied vector. Matrices are

also allowed an optional flag to set whether they are constant or not.
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Figure 5.3: A demonstration of how a list of 2D textures contain the rank-3
history gradient tensor.

The history gradients, ηi,j,k = ∂ak

∂wi,j
, are stored as a distinct 2D texture per

each ∂ak, with the dimensions of this texture spanning the i, j components of

∂wi,j. These tensors are accessed for their weight updates per-layer, so the two

indices of the weight matrix go to the texture and the one of the layer go to
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the array (Figure 5.3). This way, when we go through all our connections and

forward pass the ∂a
∂w

value to come up with each ∂y
∂w

, we only need to access

the index in the array corresponding to what layer we are forward-passing our

gradient along.

5.7 GPU Ping-Pong Implementation

The GPU implementation differs slightly from the CPU in several aspects.

Tensor operations are organized by their two most predominantly-used di-

mensions. Copies between elements are limited as much as possible, favoring

exchanges of references over values. Unique shaders also need to be created

for each step of the operation.

A key component to the GPU implementation of the RNN is its GPURNNAuxInfo

class. This information is shared between timeframes. It includes floating

point textures to be used as temporary render targets. It also includes all the

shaders that are compiled and referenced during the operation.

A staple technique for GPGPU programs is ping-ponging. GPU kernels do

not allow reading and writing to the same location of memory. For this reason

it is popular to set aside two textures for any dynamic GPGPU kernel: one for

reading, one for writing. Once the kernel operation takes place the roles of the

two textures are reversed before processing the system again. This prevents
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a need to perform an extra copy routine, however it has the minor drawback

that the memory location of the most current data is constantly changing.

5.7.1 GPURNN::prepare

Preparing the GPU RNN is a complicated process and varies greatly de-

pending on the implementing algorithm. For the ping-pong model this in-

volves allocating temporary floating-point textures and creating all shaders

and activation function kernels.

Once the network is prepared it can be used for general RNN usage. While

the basic RNN::process is still the same, the members that it calls vary in their

implementation. Each is described below:

5.7.2 GPURNN::feedForward

This is the first component of the process step. The RNN::input and RNN

::desired vectors are filled before the RNN::process method call to provide a

usage interface abstracting whether or not the GPU was used. The advantage

to this is interchangeability and flexibility of implementing the RNN class

in environments whose calculations are performed or stored outside of GPU

memory. The downside is that CPU-to-GPU memory transforms are typically

bottlenecks in GPU performance.
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void GPURNN : : feedForward ( ) {

frames [ CURRENT_FRAME]−>layers (0 )−>x . fillFromVec ( input ) ;

desTex . fillFromVec ( desired ) ;

frames [ CURRENT_FRAME]−>feedForward ( frames [ PREVIOUS_FRAME ] , aux ) ;

}

To circumvent this bottleneck an alternative method was added to the GPU

RNN for exposing the floating point textures of the input and desired vectors

directly. Paired with it is an alternative to GPURNN::feedForward which does not

need to copy the input and desired vectors from CPU memory.

FloatTex ∗GPURNN : : getInputTex ( ) {

GPURNNTimeframe ∗currentFrame = frames [ CURRENT_FRAME ] ;

if ( ! currentFrame−>getLayers ( ) . dim ( ) ) return NULL ;

return &currentFrame−>layers (0 )−>x ;

}

FloatTex ∗GPURNN : : getDesiredTex ( ) {

return &desiredTex ;

}

void GPURNN : : feedForwardWithoutFilling ( ) {

frames [ CURRENT_FRAME]−>feedForward ( frames [ PREVIOUS_FRAME ] ) ;
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}

From here we discuss our GPU implementation of matrix multiplication. For

the most primitive implementation this will make use of floating point texture

ping-ponging. Accompanying shaders are designed to sum and reduce the

channels in the textures at an exponential rate. After the matrix multiplication

completes and writes its result to the output vector, a bias element is appended

at the end of the vector. The glColorMask function is used to apply it only to

the desired component of the RGBA texel of the vector.

Several shaders are used during the matrix multiplication process:

1. The matVecRowScaleShader performs a simple texture scale operation used

as the first pass to the matrix-vector multiplication.

2. The results of the scale are sent through a rowReduce call to add like

columns into a single column.

3. The matVecColToRowCombineShader then takes up the task of rotating the

final column into a final row.

4. This final row is copied into the single row of the output net texture.

5. The layer’s signal’s transferShader calculates y from net.

6. derivShader uses both net and y to compute ∂y
∂net

.
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Figure 5.4: An example of matrix multiplication. (1) First each row is mul-
tiplied with the input vector and stored in place. (2) Next the columns are
summed together into a single column. (3) Last the remaining column is
transposed into a compact representation of the result.

Figure 5.4 gives a visual depiction of the process.

The transferShader and derivShader is scalar function applied to all compo-

nents of the vector. It varies depending on what activation function is used

for the accumulated values of the receiving layer.
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void GPURNNTimeframe : : feedForward ( GPURNNTimeframe ∗lastframe ,

GPURNNAuxInfo &aux ) {

glColor3f ( 1 , 1 , 1 ) ;

setUnitViewport ( ) ;

SetFBO fbo ( aux . fboID ) ;

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

GPURNNTimeframeLayerInfo &layerInfo = layerInfos [ i ] ;

GPURNNLayer ∗y = layers [ i ] ;

vec3i ri ( 0 , 1 , 2 ) ;

for ( int j = 0 ; j < layerInfos [ i ] . inputs . size ( ) ; j++) {

GPURNNWeight ∗w = layerInfos [ i ] . inputs [ j ] . w ;

GPURNNLayer ∗x = layerInfos [ i ] . inputs [ j ] . x ;

if ( fbo . target ( aux . regs [ ri . x ] ) ) {

glViewport (0 , 0 , VEC2ELEM ( aux . regs [ ri . x ] . texSize ) ) ;

glClearColor ( 0 , 0 , 0 , 0 ) ;

glClear ( GL_COLOR_BUFFER_BIT ) ;

SetShader ss ( aux . matVecRowScaleShader ) ;

SetTextures<2> st (w−>tex , x−>x ) ;

SetViewport sv ( vec2i (w−>tex . texSize . x , w−>tex . matSize . y ) ) ;

st . draw (sv ) ;

}

rowReduce (fbo , aux , ri , x−>x . texSize . x , w−>tex . matSize . y ) ;

bool lastpass = j == layerInfos [ i ] . inputs . size ( ) −1;

const FloatTex &desttex = lastpass ? y−>net : aux . regs [ ri . y ] ;

if ( fbo . target ( desttex ) ) {

SetShader ss ( aux . matVecColToRowCombineShader ) ;
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ss . setUniform<float>(0 , y−>net . texSize . x ) ;

ss . setUniform<float>(1 , 1 . f ) ;

ss . setUniform<float>(2 , aux . regs [ ri . x ] . texSize . x ) ;

ss . setUniform<float>(3 , aux . regs [ ri . x ] . texSize . y ) ;

ss . setUniform<float>(4 , j>0) ;

SetTextures<2> st ( aux . regs [ ri . x ] , aux . regs [ ri . z ] ) ;

SetViewport sv ( vec2i (y−>net . texSize . x , 1) ) ;

drawScreenQuad ( ) ;

}

swap (ri . y , ri . z ) ;

}

if ( fbo . target (y−>x ) ) {

{

SetShader ss (y−>signal−>transferShader ) ;

SetTextures<1> st (y−>net ) ;

SetViewport sv ( vec2i (y−>x . texSize . x , 1) ) ;

drawScreenQuad ( ) ;

}

glColorMask ( ( y−>size ( ) & 3) == 0 , (y−>size ( ) & 3) == 1 , (y−>

size ( ) & 3) == 2 , (y−>size ( ) & 3) == 3) ;

glBegin ( GL_QUADS ) ;

int qsize = y−>size ( ) >> 2 ;

float x1 = ( float ) qsize / ( float )y−>x . texSize . x ;

float x2 = ( float ) ( qsize + 1) / ( float )y−>x . texSize . x ;

glVertex2f (x1 , 0) ;

glVertex2f (x1 , 1) ;
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glVertex2f (x2 , 1) ;

glVertex2f (x2 , 0) ;

glEnd ( ) ;

glColorMask ( 1 , 1 , 1 , 1 ) ;

}

if ( fbo . target (y−>dXdNet ) ) {

SetShader ss (y−>signal−>derivShader ) ;

SetTextures<2> st (y−>net , y−>x ) ;

SetViewport sv ( vec2i (y−>x . texSize . x , 1) ) ;

drawScreenQuad ( ) ;

}

}

}

5.7.3 matVecRowScaleShader

uniform sampler2D mattex ;

uniform sampler2D rowtex ;

void main ( ) {

vec4 rowcolor = texture2D ( rowtex , gl_TexCoord [ 0 ] . st ) ;

vec4 matcolor = texture2D ( mattex , gl_TexCoord [ 0 ] . st ) ;

gl_FragColor = rowcolor ∗ matcolor ;

}

5.7.4 matVecColToRowCombineShader
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varying vec2 pos ;

uniform sampler2D coltex ;

uniform sampler2D accumtex ;

uniform float coltexwidth ;

uniform float coltexheight ;

uniform float writewidth ;

uniform float writeheight ;

uniform float accum ;

void main ( ) {

vec2 tc = vec2 ( pos . x ∗ writewidth − . 5 , pos . y ∗ writeheight − . 5 )

;

vec2 accumtc = vec2 ( ( tc . x + . 5 ) ∗ coltexwidth , (tc . y + . 5 ) ∗

coltexheight ) ;

gl_FragColor = texture2D ( accumtex , accumtc ) ∗ accum ;

vec2 coltc ;

float colr ;

coltc = vec2 ( . 5 / coltexwidth , ( 4 . ∗ tc . x + . 5 ) / coltexheight ) ;

colr = texture2D ( coltex , coltc ) . r ;

gl_FragColor . r += colr ;

coltc = vec2 ( . 5 / coltexwidth , ( 4 . ∗ tc . x + 1 . 5 ) / coltexheight ) ;

colr = texture2D ( coltex , coltc ) . r ;

gl_FragColor . g += colr ;

coltc = vec2 ( . 5 / coltexwidth , ( 4 . ∗ tc . x + 2 . 5 ) / coltexheight ) ;

colr = texture2D ( coltex , coltc ) . r ;

gl_FragColor . b += colr ;
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coltc = vec2 ( . 5 / coltexwidth , ( 4 . ∗ tc . x + 3 . 5 ) / coltexheight ) ;

colr = texture2D ( coltex , coltc ) . r ;

gl_FragColor . a += colr ;

}

5.7.5 GPURNN::calcDeDy

The GPURNN::calcDeDy is a straightforward port from the CPU variant. It

requires the current layer’s output to have been generated, as is generated at

the end of GPURNN::feedForward. It also requires the texture holding the desired

output to be provided, as occurs at the beginning of GPURNN::feedForward. It

relies on the calcDeDyShader for subtracting the network output and desired

output vectors.

void GPURNN : : calcDeDy ( ) {

frames [ CURRENT_FRAME]−>calcDeDy (aux , desTex , dEdYTex ) ;

}

void GPURNNTimeframe : : calcDeDy ( GPURNNAuxInfo &aux , const FloatTex

&desTex , FloatTex &dEdYTex ) {

GPURNNLayer ∗y = layers [ layers . dim ( ) −1];

SetFBO fbo ( aux . fboID ) ;

if ( fbo . target ( dEdYTex ) ) {

SetShader ss ( aux . calcDeDyShader ) ;

SetTextures<2> st (y−>x , desTex ) ;

SetViewport sv (y−>x . texSize ) ;
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drawScreenQuad ( ) ;

}

}



63

5.7.6 calcDeDyShader

varying vec2 pos ;

uniform sampler2D ytex ;

uniform sampler2D destex ;

void main ( ) {

vec4 ycolor = texture2D (ytex , pos ) ;

vec4 descolor = texture2D ( destex , pos ) ;

gl_FragColor = ycolor − descolor ;

}

5.7.7 GPURNN::calcError

The GPURNN::calcError function implementation is very close to that of the

CPU version.. It relies on the errorDifShader, which subtracts the network

output from desired output and squares the terms. Next it calls rowReduce to

sum the vector into a single error value.

float GPURNN : : calcError ( ) {

GPURNNTimeframe ∗frame = ( GPURNNTimeframe ∗) getCurrentFrame ( ) ;

GPURNNLayer ∗outputLayer = ( GPURNNLayer ∗)frame−>getOutputLayer ( ) ;

SetFBO fbo ( aux . fboID ) ;

vec3i ri ( 0 , 1 , 2 ) ;

if ( fbo . target ( aux . regs [ ri . y ] ) ) {

glViewport (0 , 0 , VEC2ELEM ( aux . regs [ ri . y ] . texSize ) ) ;
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glClearColor ( 0 , 0 , 0 , 0 ) ;

glClear ( GL_COLOR_BUFFER_BIT ) ;

SetShader ss ( aux . errorDifShader ) ;

SetTextures<2> st ( outputLayer−>x , desTex ) ;

glViewport (0 , 0 , outputLayer−>x . texSize . x , 1) ;

drawScreenQuad ( ) ;

}

swap (ri . x , ri . y ) ;

rowReduce (fbo , aux , ri , outputLayer−>x . texSize . x , 1) ;

float e = −fInf ;

glReadPixels ( 0 , 0 , 1 , 1 , GL_RED , GL_FLOAT , &e ) ;

return e ;

}

5.7.8 errorDifShader

varying vec2 pos ;

uniform sampler2D ytex ;

uniform sampler2D destex ;

void main ( ) {

vec4 ycolor = texture2D (ytex , pos ) ;

vec4 descolor = texture2D ( destex , pos ) ;

gl_FragColor = descolor − ycolor ;
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gl_FragColor ∗= 0.5 ∗ gl_FragColor ;

}

5.7.9 rowReduce

The rowReduce function performs a sum across the x dimension of a texture.

It makes use of the four-component dot product and several texture lookups

in order to combine the rows at up to sixteen to one. Its viewport window of

operation on the texture window shrinks by a factor of four – the number of

texture lookups per kernel pass – per iteration. Its render target output is a

fourth the size of the input, due to the four texture lookups per pass as well.

It relies on the matVecRotReduceNto1Shaders to perform the reduction.

void rowReduce ( SetFBO &fbo , GPURNNAuxInfo &aux , vec3i &ri , int

baseWidth , int viewportHeight ) {

glClearColor ( 0 , 0 , 0 , 0 ) ;

bool compressed = false ;

int curWidth = baseWidth ;

for ( ; curWidth >= 4 ; curWidth >>= 2) {

int destWidth = curWidth >> 2 ;

if ( fbo . target ( aux . regs [ ri . y ] ) ) {

if ( ! compressed ) {

glViewport (0 , 0 , VEC2ELEM ( aux . regs [ ri . y ] . texSize ) ) ;

glClear ( GL_COLOR_BUFFER_BIT ) ;

}
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SetShader ss ( aux . matVecRowReduce16to1Shader ) ;

ss . setUniform<float>(0 , destWidth ) ;

ss . setUniform<float>(1 , aux . regs [ ri . x ] . texSize . x ) ;

ss . setUniform<float>(2 , ( float ) viewportHeight / ( float ) aux . regs

[ ri . x ] . texSize . y ) ;

SetTextures<1> st ( aux . regs [ ri . x ] ) ;

SetViewport sv ( vec2i ( destWidth , viewportHeight ) ) ;

drawScreenQuad ( ) ;

}

swap (ri . x , ri . y ) ;

compressed = true ;

}

if ( ! compressed | | curWidth == 2) {

if ( fbo . target ( aux . regs [ ri . y ] ) ) {

glViewport (0 , 0 , VEC2ELEM ( aux . regs [ ri . y ] . texSize ) ) ;

glClear ( GL_COLOR_BUFFER_BIT ) ;

SetShader ss ( curWidth == 2 ? aux . matVecRowReduce8to1Shader :

aux . matVecRowReduce4to1Shader ) ;

ss . setUniform<float>(0 , aux . regs [ ri . x ] . texSize . x ) ;

ss . setUniform<float>(1 , ( float ) viewportHeight / ( float ) aux . regs

[ ri . x ] . texSize . y ) ;

SetTextures<1> st ( aux . regs [ ri . x ] ) ;

SetViewport sv ( vec2i (1 , viewportHeight ) ) ;

drawScreenQuad ( ) ;

}

swap (ri . x , ri . y ) ;
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}

}

5.7.10 matVecRowReduce16to1Shader

The matVecRowReduce16to1Shader, matVecRowReduce8to1Shader, and matVecRowReduce4to1Shader

shaders are all derived from the same GLSL fragment program by merely

alternating the NUM_COMBINES preprocessor macro value. Each of them reads in

texture values from a viewport assumed to be n
4

in size, for n the number of

values that the shader reduces per-pass. The four is due to the four chan-

nels read per texture lookup. It then writes them out into an output of size

max( n
16
, 1). The sixteen is due to the fact that four lookups are used and that

each lookup reads four channels at a time.

varying vec2 pos ;

uniform sampler2D readtex ;

#if NUM COMBINES < 4

#define writewidth 1 .

#else

uniform float writewidth ;

#endif

uniform float readwidth ;
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uniform float tyscale ;

void main ( ) {

vec2 tc = vec2 ( pos . x ∗ writewidth − . 5 , pos . y ∗ tyscale ) ;

vec2 readtc ;

vec4 readcolor ;

const vec4 ones = vec4 ( 1 . ) ;

readtc . y = tc . y ;

readtc . x = (4 . ∗ tc . x + . 5 ) / readwidth ;

readcolor = texture2D ( readtex , readtc ) ;

gl_FragColor . r = dot ( readcolor , ones ) ;

#if NUM COMBINES >= 2

readtc . x = (4 . ∗ tc . x + 1 . 5 ) / readwidth ;

readcolor = texture2D ( readtex , readtc ) ;

gl_FragColor . r += dot ( readcolor , ones ) ;

#if NUM COMBINES >= 3

readtc . x = (4 . ∗ tc . x + 2 . 5 ) / readwidth ;

readcolor = texture2D ( readtex , readtc ) ;

gl_FragColor . r += dot ( readcolor , ones ) ;

#if NUM COMBINES >= 4

readtc . x = (4 . ∗ tc . x + 3 . 5 ) / readwidth ;

readcolor = texture2D ( readtex , readtc ) ;
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gl_FragColor . r += dot ( readcolor , ones ) ;

#endif

#endif

#endif

gl_FragColor . gba = vec3 ( 0 . ) ;

}

5.7.11 GPURNN::updateHistory

The GPURNN::updateHistory method is the heart and soul of the GPU RNN

algorithm. All the prior computing was matrix-vector multiplications, adds,

and scalar functions. The GPURNN::updateHistory is where the tensor operation

between the ∂a
∂w

components is stored. In terms of our implementation, from

this point on ∂a
∂w

will refer to ξ
m,pm,n,i
s,t,j for feed-forward connections and ζ

m,pm,n,i
s,t,j

for recurrent.

void GPURNN : : updateHistory ( ) {

frames [ CURRENT_FRAME]−>updateHistory (aux , frames [ PREVIOUS_FRAME ] ,

dEdYTex ) ;

}

void GPURNNTimeframe : : updateHistory ( GPURNNAuxInfo &aux ,

GPURNNTimeframe ∗lastframe , const FloatTex &dEdYTex ) {

SetFBO fbo ( aux . fboID ) ;
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for ( int recurDst = 0 ; recurDst < 2 ; recurDst++) {

_mat<0 ,0 ,RNNWeight∗> &weightSrc = recurDst ? recurWeights :

weights ;

_tensor3 <0 ,0 ,0 , RNNHistory∗> &historyDst = recurDst ?

recurHistory : history ;

_tensor3 <0 ,0 ,0 , RNNHistory∗> &lastHistoryDst = recurDst ?

lastframe−>recurHistory : lastframe−>history ;

for ( int m = 1 ; m < layers . dim ( ) ; m++) {

int maxn = recurDst ? layers . dim ( ) : m ;

for ( int n = 0 ; n < maxn ; n++) {

if ( ! weightSrc (m , n ) ) continue ;

if ( ( ( GPURNNWeight ∗) weightSrc (m , n ) )−>constant ) continue ;

GPURNNLayer ∗xn = ( recurDst ? lastframe : this )−>layers [ n ] ;

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

GPURNNHistory ∗hmni = ( GPURNNHistory ∗) historyDst (m , n , i ) ;

GPURNNLayer ∗xi = layers [ i ] ;

vec3i ri ( 0 , 1 , 2 ) ;

SetViewport sv (hmni−>texs [ 0 ] . texSize ) ;

for ( int j = 0 ; j < hmni−>texs . dim ( ) ; j++) {

if ( fbo . target ( aux . regs [ ri . x ] ) ) {

glClearColor ( 0 , 0 , 0 , 0 ) ;

glClear ( GL_COLOR_BUFFER_BIT ) ;

}

for ( int recurSrc = 0 ; recurSrc < 2 ; recurSrc++) {

int maxk = recurSrc ? layers . dim ( ) : i ;
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const _tensor3 <0 ,0 ,0 , RNNHistory∗> &historySrc = recurSrc ?

lastHistoryDst : historyDst ;

const _mat<0 ,0 ,RNNWeight∗> &wikSrc = recurSrc ?

recurWeights : weights ;

for ( int k = 1 ; k < maxk ; k++) {

const GPURNNWeight ∗wik = ( GPURNNWeight ∗) wikSrc (i , k ) ;

if ( ! wik ) continue ;

const GPURNNHistory ∗hmnk = ( const GPURNNHistory ∗)

historySrc (m , n , k ) ;

int l = 0 ;

for ( ; l < (hmnk−>texs . dim ( ) >> 2) ; l++) {

if ( fbo . target ( aux . regs [ ri . y ] ) ) {

SetShader ss ( aux . backpropAccumShader [ 3 ] ) ;

ss . setUniform<float>(0 , ( ( float )l + .5 f ) / ( float )wik−>

tex . texSize . x ) ;

ss . setUniform<float>(1 , ( ( float )j + .5 f ) / ( float )wik−>

tex . texSize . y ) ;

SetTextures<6> st ( aux . regs [ ri . x ] , wik−>tex ,

hmnk−>texs [ 4∗ l ] , hmnk−>texs [ 4∗ l+1] , hmnk−>texs [ 4∗ l+2] ,

hmnk−>texs [ 4∗ l+3]) ;

st . draw (sv ) ;

}

swap (ri . x , ri . y ) ;
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}

int lastchannels = hmnk−>texs . dim ( ) & 3 ;

if ( lastchannels ) {

if ( fbo . target ( aux . regs [ ri . y ] ) ) {

SetShader ss ( aux . backpropAccumShader [ lastchannels−1]) ;

ss . setUniform<float>(0 , ( ( float )l + .5 f ) / ( float )wik−>

tex . texSize . x ) ;

ss . setUniform<float>(1 , ( ( float )j + .5 f ) / ( float )wik−>

tex . texSize . y ) ;

switch ( lastchannels ) {

case 1 :

{

SetTextures<3> st ( aux . regs [ ri . x ] , wik−>tex , hmnk−>texs

[ 4∗ l ] ) ;

st . draw (sv ) ;

}

break ;

case 2 :

{

SetTextures<4> st ( aux . regs [ ri . x ] , wik−>tex , hmnk−>texs

[ 4∗ l ] , hmnk−>texs [ 4∗ l+1]) ;

st . draw (sv ) ;

}

break ;

case 3 :
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{

SetTextures<5> st ( aux . regs [ ri . x ] , wik−>tex , hmnk−>texs

[ 4∗ l ] , hmnk−>texs [ 4∗ l+1] , hmnk−>texs [ 4∗ l+2]) ;

st . draw (sv ) ;

}

break ;

}

}

swap (ri . x , ri . y ) ;

}

}

}

if ( fbo . target (hmni−>texs [ j ] ) ) {

{

SetTextures<1> st ( aux . regs [ ri . x ] ) ;

st . draw (sv ) ;

}

if (i == m ) {

SetShader ss ( aux . backpropAccumDeltaShader ) ;

SetTextures<2> st ( aux . regs [ ri . x ] , xn−>x ) ;

float y1 = ( float )j / ( float )hmni−>texs [ j ] . texSize . y ;

float y2 = ( float ) (j+1) / ( float )hmni−>texs [ j ] . texSize . y ;

st . draw (sv , box2f ( vec2f (0 , y1 ) , vec2f (1 , y2 ) ) ) ;

}
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}

}

for ( int j = 0 ; j < hmni−>texs . dim ( ) ; j++) {

if ( fbo . target ( aux . regs [ ri . x ] ) ) {

SetTextures<1> st (hmni−>texs [ j ] ) ;

st . draw (sv ) ;

}

if ( fbo . target (hmni−>texs [ j ] ) ) {

SetShader ss ( aux . backpropScaleByDerivShader [ j & 3 ] ) ;

ss . setUniform<float>(0 , ( float )hmni−>texs [ j ] . texSize . x / (

float ) aux . regs [ ri . x ] . texSize . x ) ;

ss . setUniform<float>(1 , ( float )hmni−>texs [ j ] . texSize . y / (

float ) aux . regs [ ri . x ] . texSize . y ) ;

ss . setUniform<float>(2 , ( ( float ) (j >> 2) + .5 f ) / ( float )xi

−>x . texSize . x ) ;

SetTextures<2> st ( aux . regs [ ri . x ] , xi−>dXdNet ) ;

drawScreenQuad ( ) ;

}

}

}

}

}

}

}
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5.7.12 backpropAccumShader

Figure 5.5: Visual example of the history tensor computation. The above
shows the computation of the

∑
k,l w

i,pi,k

j,l (τ)ξ
m,pm,n,pi,k

s,t,l (τ) component.

The backpropAccumShader is responsible for computing the sums within the

history tensors. For ξ
m,pm,n,i
s,t,j this includes the

∑
k,l w

i,pi,k

j,l |τ ξ
m,pm,n,pi,k

s,t,l |τ (Eqn.

3.6) and
∑

k,l µ
i,qi,k
j,l |τ ξ

m,pm,n,qi,k
s,t,l |τ−1 terms. For ζ

m,pm,n,i
s,t,j this includes the
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∑
k,l w

i,pi,k

j,l |τ ζ
m,qm,n,pi,k

s,t,l |τ and
∑

k,l µ
i,qi,k
j,l |τ ζ

m,qm,n,qi,k
s,t,l |τ−1 terms (Eqn. 3.8).

The computation of the
∑

k,l w
i,pi,k

j,l |τ ξ
m,pm,n,pi,k

s,t,l |τ sum is visually displayed in

Figure 5.5.

The backpropAccumShader[n] is mapped such that the n’th entry corresponds

to CHANNELS_AT_ONCE = n+1.

uniform sampler2D accumtex ;

uniform sampler2D weighttex ;

#if CHANNELS AT ONCE >= 1

uniform sampler2D hist0tex ;

#endif

#if CHANNELS AT ONCE >= 2

uniform sampler2D hist1tex ;

#endif

#if CHANNELS AT ONCE >= 3

uniform sampler2D hist2tex ;

#endif

#if CHANNELS AT ONCE >= 4

uniform sampler2D hist3tex ;

#endif

uniform float weighttcx ;

uniform float weighttcy ;
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void main ( ) {

gl_FragColor = texture2D ( accumtex , gl_TexCoord [ 0 ] . st ) ;

vec2 weighttc = vec2 ( weighttcx , weighttcy ) ;

vec4 weightcolor = texture2D ( weighttex , weighttc ) ;

#if CHANNELS AT ONCE >= 1

vec4 histcolor = texture2D ( hist0tex , gl_TexCoord [ 2 ] . st ) ;

gl_FragColor += histcolor ∗ weightcolor . r ;

#endif

#if CHANNELS AT ONCE >= 2

histcolor = texture2D ( hist1tex , gl_TexCoord [ 2 ] . st ) ;

gl_FragColor += histcolor ∗ weightcolor . g ;

#endif

#if CHANNELS AT ONCE >= 3

histcolor = texture2D ( hist2tex , gl_TexCoord [ 2 ] . st ) ;

gl_FragColor += histcolor ∗ weightcolor . b ;

#endif

#if CHANNELS AT ONCE >= 4

histcolor = texture2D ( hist3tex , gl_TexCoord [ 2 ] . st ) ;

gl_FragColor += histcolor ∗ weightcolor . a ;

#endif

}
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5.7.13 backpropAccumDeltaShader

The backpropAccumDeltaShader is then responsible for adding the last Kro-

necher delta terms. For ξ
m,pm,n,i
s,t,j this is δi,mδj,sa

pm,n

t |τ (Eqn. 3.6) and for

ζ
m,pm,n,i
s,t,j this is δi,mδj,sa

qm,n

t |τ−1 (Eqn. 3.8).

uniform sampler2D accumtex ;

uniform sampler2D rowtex ;

void main ( ) {

vec4 accumcolor = texture2D ( accumtex , gl_TexCoord [ 0 ] . st ) ;

vec4 rowcolor = texture2D ( rowtex , gl_TexCoord [ 1 ] . st ) ;

gl_FragColor = accumcolor + rowcolor ;

}

5.7.14 backpropScaleByDerivShader

The backpropScaleByDerivShader is responsible for applying the final scaling

of ξ
m,pm,n,i
s,t,j |τ=

∂netij

∂w
m,pm,n
s,t

|τ ·σ′netij |τ (Eqn. 3.7) and ζ
m,pm,n,i
s,t,j |τ=

∂netij

∂µ
m,qm,n
s,t

|τ

·σ′netij |τ (Eqn. 3.9).

In prior versions I had only a single backpropScaleByDerivShader with a uni-

form int for accessing which channel to extract. NVIDIA’s GLSL implementa-

tions only support the operator[ ] for vector element access when the value in

the brackets is a constant int. Variables are not supported under NVIDIA. For
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this reason I recreated the shader four times with each shader option accessing

a different component of the result via the CHANNEL macro.

varying vec2 pos ;

uniform sampler2D histtex ;

uniform sampler2D dydnettex ;

uniform float histscaletcx ;

uniform float histscaletcy ;

uniform float dydnettcx ;

void main ( ) {

vec2 histtc = vec2 ( pos . x ∗ histscaletcx , pos . y ∗ histscaletcy ) ;

vec4 histcolor = texture2D ( histtex , histtc ) ;

vec2 dydnettc = vec2 ( dydnettcx , . 5 ) ;

vec4 dydnetcolor = texture2D ( dydnettex , dydnettc ) ;

float dydnet = dydnetcolor [ CHANNEL ] ;

gl_FragColor = histcolor ∗ dydnet ;

}

5.7.15 GPURNN::updateWeights

The GPURNN::updateWeights function is a simple per-element scale between the

last layer’s
∂yj

∂wi,k and the provided ∂E
∂yj

. Unlike feedforward weight updates the

weight input vector needs not be considered. It is already incorporated into

the history tensor. Instead a simple tensor product multiplication expressing
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the derivative chain rule. Figure 5.6 shows this operation.

Figure 5.6: Example of the ∂E
∂w

computation from the ∂E
∂y

vector and the
∂y

∂wm,pm,n tensor. Each tensor slice is scaled by an associated component of
the error vector and summed to produce the change in the ∂wm,pm,n weight.

void GPURNN : : updateWeights ( ) {

const int nextframeIndex = ( CURRENT_FRAME + 1) % frames . dim ( ) ;
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frames [ CURRENT_FRAME]−>updateWeights (aux , frames [ nextframeIndex ] ,

dEdYTex , timestep ) ;

}

void GPURNNTimeframe : : updateWeights ( GPURNNAuxInfo &aux ,

GPURNNTimeframe ∗nextframe , const FloatTex &dEdYTex , float

stepSize ) {

SetFBO fbo ( aux . fboID ) ;

vec3i ri ( 0 , 1 , 2 ) ;

for ( int m = 1 ; m < layers . dim ( ) ; m++) {

for ( int n = 0 ; n < layerInfos [ m ] . inputs . size ( ) ; n++) {

GPURNNHistory ∗hmny = ( GPURNNHistory ∗) layerInfos [ m ] . inputs [ n ] .

dydw ;

GPURNNWeight ∗wmnRead = layerInfos [ m ] . inputs [ n ] . w ;

GPURNNWeight ∗wmnWrite = nextframe−>layerInfos [ m ] . inputs [ n ] . w ;

const GPURNNLayer ∗y = layers [ layers . dim ( ) −1];

int ysize = y−>size ( ) ;

if ( ! ysize ) continue ;

int basemaxi = ysize >> 2 ;

int maxi = basemaxi + ! ! ( ysize & 3) ;

SetViewport sv ( wmnWrite−>tex . texSize ) ;

FloatTex ∗accumReadTex = &wmnRead−>tex ;

int i = 0 ;

for ( ; i < maxi ; i++) {

int channels = i < basemaxi ? 4 : ysize & 3 ;

bool lastpass = i == maxi − 1 ;
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FloatTex &desttex = lastpass ? wmnWrite−>tex : aux . regs [ ri . x ] ;

if ( fbo . target ( desttex ) ) {

SetShader ss ( aux . updateWeightsAccumShader [ channels−1]) ;

ss . setUniform<float>(0 , stepSize ) ;

ss . setUniform<float>(1 , ( float )sv . size . x / ( float )

accumReadTex−>texSize . x ) ;

ss . setUniform<float>(2 , ( float )sv . size . y / ( float )

accumReadTex−>texSize . y ) ;

ss . setUniform<float>(3 , ( ( float )i + .5 f ) / ( float )y−>x .

texSize . x ) ;

glActiveTextureARB ( GL_TEXTURE0_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , accumReadTex−>texID ) ;

glActiveTextureARB ( GL_TEXTURE1_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , dEdYTex . texID ) ;

glActiveTextureARB ( GL_TEXTURE2_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , hmny−>texs [ 4∗ i ] . texID ) ;

if ( channels >= 2) {

glActiveTextureARB ( GL_TEXTURE3_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , hmny−>texs [ 4∗ i+1] . texID ) ;

if ( channels >= 3) {

glActiveTextureARB ( GL_TEXTURE4_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , hmny−>texs [ 4∗ i+2] . texID ) ;

if ( channels == 4) {

glActiveTextureARB ( GL_TEXTURE5_ARB ) ;

glBindTexture ( GL_TEXTURE_2D , hmny−>texs [ 4∗ i+3] . texID ) ;

}
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}

}

drawScreenQuad ( ) ;

}

if ( ! lastpass ) {

swap (ri . x , ri . y ) ;

accumReadTex = &aux . regs [ ri . y ] ;

}

}

}

}

for ( int i = 7 ; i >= 0 ; i−−) {

glActiveTextureARB ( GL_TEXTURE0_ARB + i ) ;

glBindTexture ( GL_TEXTURE_2D , 0) ;

}

}

5.7.16 updateWeightsAccumShader

The updateWeightsAccumShader operates by scaling each component of the ∂E
∂yl

vector with its matching ∂yl

∂wm,pm,n slice of the history computed previously in

GPURNN::updateHistory.

varying vec2 pos ;
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uniform sampler2D accumtex ;

uniform sampler2D dedytex ;

#if CHANNELS AT ONCE >= 1

uniform sampler2D dydw0tex ;

#endif

#if CHANNELS AT ONCE >= 2

uniform sampler2D dydw1tex ;

#endif

#if CHANNELS AT ONCE >= 3

uniform sampler2D dydw2tex ;

#endif

#if CHANNELS AT ONCE >= 4

uniform sampler2D dydw3tex ;

#endif

uniform float stepSize ;

uniform float accumscaletcx ;

uniform float accumscaletcy ;

uniform float ytcx ;

void main ( ) {

vec2 accumtc = vec2 ( pos . x ∗ accumscaletcx , pos . y ∗ accumscaletcy )

;

gl_FragColor = texture2D ( accumtex , accumtc ) ;

vec2 ytc = vec2 (ytcx , . 5 ) ;

vec4 dedydtcolor = texture2D ( dedytex , ytc ) ∗ stepSize ;
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#if CHANNELS AT ONCE >= 1

vec4 dydwcolor = texture2D ( dydw0tex , pos ) ;

gl_FragColor −= dedydtcolor . r ∗ dydwcolor ;

#endif

#if CHANNELS AT ONCE >= 2

dydwcolor = texture2D ( dydw1tex , pos ) ;

gl_FragColor −= dedydtcolor . g ∗ dydwcolor ;

#endif

#if CHANNELS AT ONCE >= 3

dydwcolor = texture2D ( dydw2tex , pos ) ;

gl_FragColor −= dedydtcolor . b ∗ dydwcolor ;

#endif

#if CHANNELS AT ONCE >= 4

dydwcolor = texture2D ( dydw3tex , pos ) ;

gl_FragColor −= dedydtcolor . a ∗ dydwcolor ;

#endif

}

5.8 GPU With Unravelled Loops

Early hardware running fragment programs was slowed heavily by branch-

ing. Even in later hardware such as the NVIDIA Tesla, when two threads in

a warp branch in different ways, there is a major slowdown. Because of this,

for-loops, which require a compare every iteration, offer significant potential

damage to shader performances. One solution for this is to unravel the loops
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in your shader code. This is only effective if the size of the loop is fixed at

compile time. This restriction was accommodated for by dynamically compil-

ing the shader kernels during the RNN class initialization. From this point

the networks were subsequently fixed in size. Any such modifications to any

layer sizes would require the shader code to be recompiled.

A benefit of writing out unravelled loops of iteration across the shaders is

that they remove our dependency upon the ping-pong effect. This reduces

the number of passes required to complete our operation and increases per-

formance. A downside to this is that a separate unique shader needs to be

written for each layer. Another restriction to loop unravelling in the shader is

that, for each new unravelled line of code, a new set of instructions must be

generated for the GPU shader. This poses a threat to earlier graphics cards

whose memory size was restricted.

In our RNN implementation, the implementation of unravelled loops only

occurs to replace the log(n)-pass rowReduce method. The two methods that pre-

viously relied on this were GPURNNTimeframe::feedForward and GPURNN::calcError.

In place of each rowReduce call is a reference to a dynamically-generated shader

that is created during the GPURNN::prepare method.
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5.8.1 GPURNNTimeframe::feedForward

The GPURNNTimeframe::feedForward is changed in our implementation of un-

ravelled loops. Whereas before four different shaders had to be made use of

to complete the operation, now only one is: layerShader−>feedForwardShader.

This saves in the number of passes for the kernel to run over the data. The

tradeoff is, however, that more texture units need to be utilized for this single

pass. If more units are required than the graphics card allows, the network

topology can be redesigned to work equivalently while still working on hard-

ware with such restrictions.

Unique shaders are generated per-layer. The number of input texture units

is proportional to the number of input layers to that layer. The shader passes

along the texture of the output layer, performing lookups across the width of

the matrix.

void GPURNNTimeframe : : feedForward ( GPURNNTimeframe ∗lastframe ,

GPURNNAuxInfo &aux ) {

glColor3f ( 1 , 1 , 1 ) ;

setUnitViewport ( ) ;

SetFBO fbo ( aux . fboID ) ;

for ( int i = 1 ; i < layers . dim ( ) ; i++) {

GPURNNTimeframeLayerInfo &layerInfo = layerInfos [ i ] ;

GPURNNLayer ∗y = layers (i ) ;
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GPURNNAuxLayerShaderInfo ∗layerShader = aux . layerShaders [ i ] ;

if ( fbo . target (y−>net , y−>x , y−>dXdNet ) ) {

{

SetViewport sv ( layerShader−>viewportSize ) ;

SetShader ss ( layerShader−>feedForwardShader ) ;

for ( int j = 0 ; j < layerInfo . inputs . size ( ) ; j++) {

glActiveTextureARB ( GL_TEXTURE0_ARB + 2 ∗ j ) ;

glBindTexture ( GL_TEXTURE_2D , layerInfo . inputs [ j ] . x−>x . texID ) ;

glActiveTextureARB ( GL_TEXTURE0_ARB + 2 ∗ j + 1) ;

glBindTexture ( GL_TEXTURE_2D , layerInfo . inputs [ j ] . w−>tex . texID

) ;

}

drawScreenQuad ( ) ;

for ( int j = 0 ; j < 2 ∗ layerInfo . inputs . size ( ) ; j++) {

glActiveTextureARB ( GL_TEXTURE0_ARB + j ) ;

glBindTexture ( GL_TEXTURE_2D , 0) ;

}

}

{

SetViewport sv (y−>x . texSize ) ;

glColorMask (

(y−>size ( ) & 3) == 0 ,

(y−>size ( ) & 3) == 1 ,

(y−>size ( ) & 3) == 2 ,

(y−>size ( ) & 3) == 3) ;
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glBegin ( GL_QUADS ) ;

int qsize = y−>size ( ) >> 2 ;

float x1 = ( float ) qsize / ( float )y−>x . texSize . x ;

float x2 = ( float ) ( qsize + 1) / ( float )y−>x . texSize . x ;

glVertex2f (x1 , 0) ;

glVertex2f (x1 , 1) ;

glVertex2f (x2 , 1) ;

glVertex2f (x2 , 0) ;

glEnd ( ) ;

glColorMask ( 1 , 1 , 1 , 1 ) ;

}

}

}

}

5.8.2 GPURNN::calcError

True to the prior demonstration of loop optimizations in the shader, the

GPURNN::calcError can likewise be optimized into a single pass operation. The

ping-pong based method required one pass for the difference to be calcu-

lated and another log(n) passes to reduce the sum via rowReduce. The un-

ravelled shader runs completely inside of calcErrorShader, which is generated

per-network during the GPURNN::prepare method.
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float GPURNN : : calcError ( ) {

GPURNNTimeframe ∗frame = ( GPURNNTimeframe ∗) getCurrentFrame ( ) ;

GPURNNLayer ∗outputLayer = ( GPURNNLayer ∗)frame−>getOutputLayer ( ) ;

SetFBO fbo ( aux . fboID ) ;

if ( fbo . target ( aux . regs [ 0 ] ) ) {

SetShader ss ( aux . calcErrorShader ) ;

SetTextures<2> st ( outputLayer−>x , desTex ) ;

glViewport ( 0 , 0 , 1 , 1 ) ;

drawScreenQuad ( ) ;

}

float e = −fInf ;

glReadPixels ( 0 , 0 , 1 , 1 , GL_RED , GL_FLOAT , &e ) ;

return e ;

}

5.9 GPU With For Loops

The addition of for-loops is a harmless step up from unravelled loops gen-

erated in shader programs. For loop upper bounds are generated uniquely

to each shader in each layer. This can, in theory, allow the shader compiler

the opportunity to perform the same unravelling that I otherwise would’ve.

The benefit to using this over explicitly unravelled loops is that the number

of shader instructions blooms at a rate of O(1) rather than O(n) with respect

to the number of inputs used.
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5.10 ∂E
∂net Optimization

To circumvent the weighty use of tensors, it is possible to optimize in the

user of the ∂E
∂net

wherever able. This can be found by checking all paths from

a weight’s output and seeing if any of them are the destination of a recur-

rent connection’s edge. If they are, then a cycle in derivative computation

dependencies exists.

The acyclic paths can be optimized in the old fashioned manner. Back-

propagation, an O(n2) algorithm, can be applied from the output node back

to each of these nodes before the general recurrent O(n3) algorithm is applied

to all weights which subsequently connect into this layer. This completely

reduces the algorithm from O(n3) to O(n2) for all networks which do not

make use of recurrent connections.

In this project the ∂E
∂net

optimization was implemented for both CPU, GPU

with unravelled loops, and GPU with explicit loops.

5.11 Future Optimization

There are still several avenues of optimization that I have not yet pursued.

The above ∂E
∂net

optimization does reduce the complexity of certain edges with

acyclic paths to the y layer fromO(n3) to O(n2). It still leaves all the remaining
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edges in need of the original full forward pass to compute ∂a
∂w

. There still may

still be means of optimizing out certain redundant calculations in the tensor

product chain rule.

The implementation can be improved upon in several different areas in re-

gards to hardware as well. One such means would be to design a proxy network

class to abstract any hardware limitations that the network might face, such

as a limit on texture units or on texture sizes. Another feature still to be

implemented is the ability to let the user define what transfer function they

would like to use between layers. Further advances could include automatic

gradient generation – even through arbitrary rank tensors and functions.
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Chapter 6 – Results

For this project several examples were implemented to benchmark the GPU

RNN in different circumstances. For each example I will list out comparisons

between the performance with CPU and GPU versions. For certain examples

I will also list what preprocessor macros were applied as well.

The following configurations will be benchmarked: CPU, GPU with ping-

pong reductions, GPU with unravelled loops, GPU with for-loops. The same

tests will be composed again with the ∂E
∂net

optimizations applied.

6.1 Accuracy

GPU and CPU floating point implementations can vary slightly in their

rounding and accuracy. For this reason verifying their accuracy was pretty

important. Shadowing is a condition in mathematics when a simulation varies

slightly from its true algebraic value due to rounding errors. Dynamic system

theory reminds us that these errors can grow exponentially within our system.

RNNs, thanks to their feedback nature, especially fall into this category.
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Figure 6.1: An example of a sequence for which the CPU and GPU values
align closely

6.2 Performance

For our performance example two networks were used: one to test feedfor-

ward performance and one to test recurrence performance. The feedforward

network consisted of two weight connections between an input layer of size 2n,

a hidden layer of size 2n, and an output layer of size n. The recurrent network

consisted of the same problem in the form of an Elman network, that is to say
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Figure 6.2: An example of a sequence for which the CPU and GPU values
eventually diverge

it had an addition recurrent connection from the hidden layer back into itself.

The networks were trained to an addition problem, feeding in two numbers of

size of n-bits, in binary, and training the network to its n-bit sum, in binary.

We start with an unoptimized CPU implementation of the O(n3) ∂a
∂w

imple-

mentation. Converting this algorithm to the GPU with ping-pong reduction

improves performance times dramatically, but not for small vector sizes due to
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the overhead of using the GPU. Next we replace the ping-pong reduction with

unravelled loop reduction. Finally the unravelled reduction loop is replaced

with a for-loop in the shader.

Figure 6.3 shows the comparison of algorithms on the ATI X1600. This is

running without subsequent ∂E
∂net

optimizations. Note how the GPU quickly

outperforms the CPU as the layer sizes are progressively increased. Also note

the stair-stepping in time taken that occurs exponentially further apart as bit

size is increased. This is due to the fact that all texture objects are created

with dimensions rounded up to the next power of two in size.

Figure 6.4 shows the comparison of algorithms on the NVIDIA GeForce

8600 GTS, demonstrating the same tradeoff of performance gain between the

CPU and GPU as the layer sizes increase.

The CPU performs better for initial network sizes but is soon undercut by

the parallelism of the GPU. Soon after the GPU maintains better performance

for larger networks within which more data is computed in parallel. It doesn’t

appear that there is much performance difference between different GPU im-

plementations, however some implementations have different restrictions. The

unravelled loops implementation can be seen to succumb to the listed restric-

tions as the shader program instruction count reaches a critical capacity: on

the ATI the GPU fails to execute its fragment shader for problems of size 67
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Figure 6.3: Logarithmic plot of time versus bit size. Performance comparison
for an Elman network on an 1.83 GHz Intel dual core with 2GB RAM and an
ATI X1600 graphics card. Stair-stepping of performance as bit size increases
exponentially is due to the textures being rounded up to the next power of
two in size.

bits and greater. Rendering of the fragments still occurs but the results stop

converging.
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Figure 6.4: Logarithmic plot of time versus bit size. Performance comparison
for an Elman network on an 3.20 GHz Intel dual core with 2GB RAM and a
NVIDIA GeForce 8600 GTS graphics card.

Introducing ∂E
∂net

optimizations gives a noticeable performance increase. Fig-

ures 6.5 and 6.6 shows this. The optimized CPU implementation performs 10x

to 100x faster than the fastest unoptimized GPU implementation. It also per-

forms better than the optimized GPU implementation for the first few bit

sizes. This was true as well for the unoptimized version: due to constant-time
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GPU overhead the CPU is more efficient for smaller network sizes, though for

larger networks the GPU performs better.

Figure 6.5: Logarithmic plot of time versus bit size. Performance comparison
for a feedforward network between unoptimized computation and ∂E

∂net
opti-

mized computation on an 1.83 GHz Intel dual core with 2GB RAM and an
ATI x1600 graphics card.
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Figure 6.6: Logarithmic plot of time versus bit size. Performance comparison
for a feedforward network between unoptimized computation and ∂E

∂net
opti-

mized computation on an 3.20 GHz Intel dual core with 2GB RAM and a
NVIDIA GeForce 8600 GTS graphics card.

6.2.1 Hardware Trends

As GPU power increases this implementation’s effectiveness will also better

perform. Figure 6.7 shows the increase in performance over a span of different

platforms. The graph shows the ATI X1600 holds a performance advantage
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over the later generation NVIDIA GeForce chipsets for small vector sizes.

However as the system size increases, the performance favors the newer chips.

Figure 6.7: Logarithmic plot of time versus bit size. Comparison between
different machines of the GPU ping-pong implementation.
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Chapter 7 – Conclusion

For recurrent systems there is an eventual tradeoff in performance between

the CPU and GPU implementations. For the ATI x1600 card, for networks of

dimension less than 20, the CPU outperforms the GPU. Beyond that the GPU

maintains a better speed, even up to as much as 100 times for significantly

large vectors (of 200 dimensions or more).

For feed-forward systems the CPU maintains better performance for small

dimensions as well. On the NVIDIA GeForce 8600 GTS the point of trade-off

occurred at 35 dimensions. The performance benefit of the GPU implemen-

tation over the CPU does not provide as much of a benefit as it does for the

recurrent network. The GPU best outperforms the CPU at a dimensionality

just below 130.

Overall it appears the GPU based RNN implementation outperforms CPU

based implementations for networks with dimensions above 30 or so. For

smaller networks the CPU implementation is optimal to use. For larger, how-

ever, the GPU can outperform the CPU by rates of up to 100 times faster.
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